Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how evolution shapes genetic networks to create new developmental forms is a central question in biology. Flowering shoot (inflorescence) architecture varies significantly across plant families and is a key target of genetic engineering efforts in many crops1–4. Asteraceae (sunflower family), comprising 10% of flowering plants, all have capitula, a novel inflorescence that mimics a single flower5,6. Asteraceae capitula are highly diverse but are thought to have evolved once via unknown mechanisms7,8. During capitulum development, shoot stem cells undergo prolonged proliferation to accommodate the formation of intersecting spirals of flowers (florets) along the disk-shaped head9,10. Here we show that capitulum evolution paralleled decreases in CLAVATA3 (CLV3) peptide signaling, a conserved repressor of stem cell proliferation. We trace this to novel amino acid changes in the mature CLV3 peptide which decrease receptor binding and downstream transcriptional outputs. Using genetically tractable Asteraceae models, we show that reversion ofCLV3to a more active form impairs Asteraceae stem cell regulation and capitulum development. Additionally, we trace the evolution ofCLV3and its receptors across the Asterales allowing inferences on capitulum evolution within this lineage. Our findings reveal novel mechanisms driving evolutionary innovation in plant reproduction and suggest new approaches for genetic engineering in crop species.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract PremiseA family‐specific probe set for sunflowers, Compositae‐1061, enables family‐wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. MethodsWe developed a Hyb‐Seq probe set, Compositae‐ParaLoss‐1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genusPackera. We performed Hyb‐Seq with Compositae‐ParaLoss‐1272 for 19Packerataxa that were previously studied using Compositae‐1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. ResultsWe report that Compositae‐ParaLoss‐1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae‐1061. Most notably, Compositae‐ParaLoss‐1272 recovered substantially fewer paralogous sequences than Compositae‐1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae‐1061. DiscussionGiven the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae‐ParaLoss‐1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.more » « less
-
Studies on the perception of animals and plants often report that students prefer to learn more about animals than plants and usually have more difficultly noticing plants in the environment. This could impact conservation programs and initiatives, as animals are often considered more important and may be deemed worthier of conservation efforts. Providing students an opportunity to connect to plants and understand how they affect their lives is one step toward raising awareness around this issue. Compositae, also known as Asteraceae or the sunflower family, is the largest family of flowering plants, accounting for ~10% of flowering plant diversity in the world. They are present in virtually all biomes and environments and fulfill multiple ecological niches. Some members of the family are widely cultivated as crops, such as sunflower, lettuce, artichoke, and chicory; several species are grown as ornamental plants; and others are used in the pharmaceutical and chemical industry. Compositae’s presence in so many contexts make the family a good candidate for activities aiming to increase plant awareness, as several Compositae species are already present in our everyday lives. Here we present Compositae in a Crate, a teacher-guided outreach activity aimed at the 4th and 5th school grades. This crate of activities contains four different modules focusing on different aspects of the sunflower family: biodiversity, morphology, society, and genomics. Each module has different learning objectives and can be used independently from each other. A guide and different activities, such as flash cards, puzzles, and 3D models, are provided in each module. The activities will be prepared to meet the national and state of Tennessee education standards for the 4th and 5th grades. The produced crates will be available at different institutions and all materials will be made available online so other interested parties can produce their own crates.more » « less
-
Abstract Cultivated pear consists of several Pyrus species with Pyrus communis (European pear) representing a large fraction of worldwide production. As a relatively recently domesticated crop and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative genomics within Rosaceae promises greater understanding of evolution within this economically important family. Here, we generate a fully phased chromosome-scale genome assembly of P. communis ‘d’Anjou.’ Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved into the expected 17 chromosomes, with each haplotype totaling nearly 540 Megabases and a contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other and to the Malus domestica ‘Honeycrisp’ apple genome. Nearly 45,000 genes were annotated in each haplotype, over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known whole-genome duplication shared between apple and pear, and we estimate 57% of d’Anjou genes are retained in duplicate derived from this event. This genome highlights the value of generating phased diploid assemblies for recovering the full allelic complement in highly heterozygous crop species.more » « less
An official website of the United States government
